

Lapis 0.20um SOI Process 1.8V I/O Library Release Note

v.3.0 2025.3.18

Approved byI. Kurachi (KEK)Verified byY. Arai (KEK)ESD Counseled byY. Fukuda (RCJ)Prepared byT. Takayanagi (KEK)

Revision History

Rev	Date	Notice	Description
0.0	2020.03.31		新規作成
1.0	2020.11.16		Typo修正:4-4、4-5 Truth Table
2.0	2023.7.24	Y. Arai	Added BN5 under BNW to support more rigid back-side potential. Removed double SOI related error.
3.0	2024.11.15	Y. Arai	Added enhanced driving capability & better linearity version of analog buffer (io_aobuf4_1P8 & io_aobufar_1P8).

Contents

- 1. Introduction
- 2. Specification
- 3. Cell list
- 4. I/O Buffer cells
- 5. Analog buffer cells
- 6. I/O Buffer ring
- 7. Appendix
 - Used Test Bench List
 - Power GND Resistance
 - Digital Output Buffer IOH/IOL
 - Remained DRC errors

- This library is converted from 'IOLIBP1' 3.3V I/O prepared for p-type substrate and using single 1.8V power supply.
- Please note cells in the library are just shown as samples and its performance is not guaranteed, so please use these cells at your own risk.
- GDS layout and schematics are contained in the 'IOLIBP1_1P8_v3.tar.gz', so please define this library as 'IOLIBP1_1P8' in cds.lib file as 'DEFINE IOLIBP1_1P8 ./IOLIBP1_1P8_v3'.
- If you find any error in the library, please notify to <u>takayana@post.kek.jp</u> or yasuo.arai@kek.jp

2-1. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power-supply Voltage	VDD18	-0.3~ +2.5	V
Input Voltage	Vin	-0.3 ~ VDD18+0.3	V
Output Voltage	Vout	-0.3 ~ VDD18+0.3	V
Storage Temperature	Tstg	-55 ~ +125	°C

2-2. Recommended Operating Conditions

Parameter	Symbol	Value			Unit
		Min.	Тур.	Max.	
Power-supply Voltage	VDD18	1.65	1.8	1.95	V
Operating Temperature	Тор	-40		125	°C

2-3. DC Characteristic for digital buffers

Parameter	Symbol	Value			Unit
		Min.	Тур.	Max.	
Input Voltage(High-Level)	VIH	0.7 X VDD18	-	VDD18	V
Input Voltage(Low-Level)	VIL	0	-	0.3 X VDD18	V
Output Voltage(High-Level)	VOH	0.75 X VDD18	-	VDD18	V
Output Voltage(Low-Level)	VOL	0	-	0.25 X VDD18	V
Input Current(High-Level)	IIH	-	-	1.0	μA
Input Current(Low-Level)	IIL	-1.0	-	-	μA
Output Current(Z/High-Level)	IOZH	-	-	1.0	μA
Output Current(Z/Low-Level)	IOZL	-1.0	-	-	μA

2-4. AC Characteristic

Parameter	Symbol	Value		Unit	
		Min.	Тур.	Max.	
Input buffer	TpHL	-	-	1.5	ns
Propagated Delay Time	TpLH	-	-	1.5	ns
Output buffer	TpHL	-	-	5.0	ns
Propagated Delay Time	TpLH	-	-	5.0	ns

2-5. ESD Target

Parameter	Symbol	Value	Unit
HBM(Human Body Model)	HBM	±2000	V
CDM(Charge Device Model)	CDM	± 500	V

2-6.ESD Rules

(a) Power/GND Cell

Please put Power Cell("ioVDD18_5M4_1P8") next to GND Cell("ioVSS_5M4_1P8).

2-6.ESD Rules

(b) Input/Output Cell

Please put I/O Cell as follows.

The maximum distance from I/O to "ioVDD_5M4_1P8" is 1000 μ m. The maximum distance from I/O to "ioVSS_5M4_1P8" is 800 μ m

Status	1P8 IO Library			Status		
1.8V対応	Cell name	Туре	Description	schematic	layout	lvs/drc
0	ioIT4N_5M4_1P8	Input	1.8V LVTTL Digital Input Buffer with Y,YB	0	0	0
0	ioIT4ND_5M5_1P8	Input	1.8V LVTTL Digital Input Buffer with Y,YB and Pull Down Tr (~17uA@1.8V)	0	0	0
0	ioIT4NDP_5M5_1P8	Input	1.8V LVTTL Digital Input Buffer with Y,YB and Pull Down Tr (~17uA@1.8V) Enhanced Y,YB	0	0	0
0	ioOT4A_5M5_1P8	Output	Tri-state Digital Output Buffer (4mA)	0	0	0
0	ioOT4B_5M5_1P8	Output	Tri-state Inverting Digital Output Buffer (4mA)	0	0	0
0	ioVDD18_5M4_1P8	Power	1.8V Power cell for core transistors	0	0	0
0	ioVSS_5M4_1P8	GND	Ground cell for VDD18	0	0	0
0	ioCORNER_5M6_1P8	-	Corner Cell	0	0	0
0	iodr_5M4_1P8	Input/Outout	Analog pad with protection diodes and resistor	0	0	0
0	iod_5M4_1P8	Input/Outout	Analog pad with protection diodes	0	0	0
0	iothr_5M4_1P8	Input/Outout	Direct analog pad	0	0	0
0	iobuf_5M4_1P8	Input/Outout	Digital bidirectional Input/Output (4mA) Buffer	0	0	0
0	iobuf2_5M4_1P8	Input/Outout	Digital bidirectional Input/Output (4mA) Buffer with fast return path from A to Y.	0	0	0
0	iofill_5M4_1P8	-	IO ring fill cell.	0	0	0
0	iofill_M4cut_1P8	-	IO ring fill cell. Layer change in M4 power line.	0	0	0
0	ioAOBUF18EN3_5M4_RR_VF	Output	Analog output buffer	0	0	0
0	ioBIAS18_5M4_RR	-	Analog buffer bias circuit	0	0	0
0	io_aobuf_1P8	-	Analog buffer layout example	0	0	0
0	ioring29_5M5_1P8	-	IO ring for 2.9mm chip (PGA178)	0	0	0
0	ioring29L2_5M5_1P8	-	IO ring for 2.9mm chip with 200um bias spacing for pixel (PGA178)	0	0	0
0	ioring45_5M5_1P8	-	IO ring for 4.5mm chip (PGA178)	0	0	0
0	ioring45L2_5M5_1P8	-	IO ring for 4.5mm chip with 200um bias spacing for pixel (PGA178)	0	0	0
0	ioring60_5M5_1P8	-	IO ring for 6.0 mm chip (PGA240)	0	0	0
0	ioring60L2_5M5_1P8	-	IO ring for 6.0 mm chip with 200um bias spacing for pixel (PGA240)	0	0	0
0	ioring60L2S_5M5_1P8	-	IO ring for 6.0 mm chip with 200um bias spacing for pixel (PGA178)	0	0	0
0	lo_aobuf4_1P8 (new)	Output	Analog buffer layout example (Enhanced Driving capability)	0	0	0
0	lo_aobufar_1P8 (new)	Output	Analog buffer layout example (Enhanced Driving capability, Better Linearity)	0	0	0

4-1. ioIT4N_5M4_1P8 (digital input buffer)

Logic Symbol

Schematic

Truth Table

Input IN	Output Y	Output YB
1	1	0
0	0	1

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
IN	Y	LH	0.36
		HL	0.44
IN	YB	LH	0.60
		HL	0.68

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=100MHz, Cload= 0.4pF

4-2. ioIT4ND_5M5_1P8 (digital input buffer with pull down)

Logic Symbol

I(Pull Down)=15µA@VIN=1.8V

Truth Table

Input IN	Output Y	Output YB
1	1	0
0	0	1

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
IN	Y	LH	0.39
		HL	0.45
IN	IN YB	LH	0.64
		HL	0.68

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=100MHz, Cload= 0.4pF

<u>Schematic</u>

4-3. ioIT4NDP_5M5_1P8 (digital input buffer with pull down Enhanced Y,YB)

Logic Symbol

I(Pull Down)=15µA@VIN=1.8V

Truth Table

Input IN	Output Y	Output YB
1	1	0
0	0	1

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
IN	Y	LH	0.38
		HL	0.42
IN	YB	LH	0.53
		HL	0.56

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=100MHz, Cload= 0.4pF

<u>Schematic</u>

4-4. ioOT4A_5M5_1P8 (Tri-state Digital Output Buffer (4mA))

Schematic

Truth Table

Input A	Input OE	Output OUT
1	1	1
0	1	0
Х	0	Z

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
А	OUT	LH	0.79
		HL	1.33

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=60MHz, Cload= 25pF

4-5. ioOT4B_5M5_1P8 (Tri-state Inverting Digital Output Buffer (4mA))

Schematic

Truth Table

Input B	Input OE	Output OUT
1	1	0
0	1	1
Х	0	Z

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
В	OUT	LH	0.84
		HL	1.43

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=60MHz, Cload= 25pF

© Copyright 2020 KEK

4-6. ioVDD18_5M4_1P8 (1.8V Power cell for core transistors)

Logic Symbol

<u>Schematic</u>

4-7. ioVSS_5M4_1P8 (Ground cell for VDD18)

Logic Symbol

GND18

There is no internal circuit so not need to include in schematic for LVS check.

<u>Schematic</u>

 GND18 - Karal Andrew Contraction (1997)
 Based on (IOLIB5M4: ioVSS_5M3
 2011.7.25 Y.Arai(KEK) There is nocomponent
 so please don't put this cell in LVS schematics.)
 2020 1 30 T Takayanggi(KEK)

4-8. ioCORNER_5M6_1P8 (Corner Cell)

Logic Symbol

In addition to power and ground pads, this cell contains BPW(VIO_BNW) and SOI2(VIO_2SI) pads which are connected to BNW and SOI2 layer in I/O buffers.

<u>Layout</u>

Schematic

4-9. iodr_5M4_1P8 (Analog pad with protection diodes and resistor)

Logic Symbol

GND18

Use this cell for voltage signal, which should be protected from external noise, between VSS and VDD18.

<u>Schematic</u>

4-10. iod_5M4_1P8 (Analog pad with protection diodes)

Logic Symbol

Use this cell for voltage or current supply between VSS and VDD18.

<u>Schematic</u>

4-11. iothr_5M4_1P8 (Direct analog pad)

Logic Symbol

INOUT 🗖

Use this cell for voltage outside of VSS~VDD18, or any signal which must be directly connected to internal circuit without protection circuit.

<u>Schematic</u>

4-12. iobuf_5M4_1P8 (Digital bidirectional Input/Output (4mA) Buffer)

<u>Schematic</u>

Truth Table INOUT Input OE Output Α Υ High Z Х HiZ 0 _ 0 0 Output 1 0 mode 1 1 1 1 0 0 0 Input mode 0 1 1

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
А	INOUT	LH	0.79
		HL	1.33
INOUT	Y	LH	0.35
		HL	0.43

<output Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=60MHz, Cload= 25pF <input Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=100MHz, Cload= 0.4pF, OE=L

4-13. iobuf2_5M4_1P8 (Digital bidirectional Input/Output (4mA) Buffer with fast return path from A to Y)

Schematic

Truth Table

tpd

Input A	OE	Output Y	INOUT	
Х	0	-	HiZ	High Z
0	1	0	0	Output
1	1	1	mode	
-	0	0	0	Input
-	0	1	1	mode

Delay (c+cc post Simulation Result)

From	То	Tpd	Tpd(ns)
А	INOUT	LH	0.79
		HL	1.33
А	Y	LH	0.42
		HL	0.45

<output Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=60MHz, Cload= 25pF <input Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, F=100MHz, Cload= 0.4pF, OE=H

2023/7/24

50

4-14. iofill_5M4_1P8 (IO ring fill cell)

Logic Symbol

```
This cell is used for
Power/GND
connection in the
I/O ring without
pad.
```

<u>Schematic</u>

4-15. iofill_M4cut_1P8 (IO ring fill cell. Layer change in M4 power line)

4-16. ioGND2GND_1P8 (bidirectional diode for divided GND)

Logic Symbol

In case of dividing GND, such as analog and digital, it is needed to insert bidirectional diode between all GND for keeping ESD performance.

This cell is just a example , number of diode stage should be determined in each device .

Example Schematic

Example Layout

5-1. Analog Buffers

1.8V IOLIB(IOLIBP1_1P8)のAnalog Bufferに、新たに2種類のBufferを加えた。それぞれのBufferの特徴を 下表に、また特性を次ページ以降に示す。

I/O Cell Name	Bias Cell Name	ESD耐性	Linearity/ Drive能力	Comment
io_aobuf_1P8	ioBIAS18_5M4_RR	Ø	Δ	初期バージョン IO Pad領域に置ける (高さ~150um超過)
io_aobuf4_1P8	ioBIAS18_5M4_RR	0	0	lo_aobuf_1P8互换。 出力抵抗削除。 Transfer Gate増強。
lo_aobufar_1P8	ARO_BIAS18_AOB04AB	Δ	Ø	A-R-Tec社製作。 内部Core Tr使用

5-1. Analog Buffers

Transition Simulation

SEABAS2/3相当の負荷(1kΩ+10pF, 1.2V終端)時の、10MHzサイン波に対する出力波形の比較を示す。 従来型のio_aobuf_1P8では入力より約40%振幅が減少するが、改良型のio_aobuf4_1P8では約15%減少。 また、A-R-Tec製作のBufferでは約10%の減少であった。

5-1. Analog Buffers

AC Simulation

AOBUF18(io_aobufar_1P8)が最も線型性が良い。

5-1. Introduction
Simulation回路

5-2. io_aobuf4_1P8 & io_aobuf_1P8 (Schematic & layout example)

CUR_INの標準値は36uAでこの時V(CUR_IN)=0.73V XEN=Lで出力Enable.

5-2. io_aobuf4_1P8 & io_aobuf_1P8 (Schematic2)

(* io_aobuf_1P8では OAOBUF18_30EN2_RR_OPEN)

5-2. io_aobuf4_1P8 & io_aobuf_1P8 (Schematic3)

5-2. io_aobuf4_1P8 & io_aobuf_1P8 (Schematic4, Difference)

5-2. io_aobuf4_1P8 & io_aobuf_1P8 (Schematic5, Bias circuit)

5-2. io_aobuf_1P8 (Specification)

<u>Characteristic</u>

<table-container> Participand Participand</table-container>																				
<table-container> Phar 1 1 1 1 1 1 1 1 1 1 1 1 1</table-container>					3.3	V版								1.	8V版					
visit visit <t< td=""><td>百日</td><td></td><td></td><td>仕様書</td><td></td><td></td><td>Hspice</td><td></td><td>単位</td><td>判定</td><td>補足</td><td></td><td>仕様書</td><td></td><td></td><td>Hspice</td><td></td><td>単位</td><td>判定</td><td>補足</td></t<>	百日			仕様書			Hspice		単位	判定	補足		仕様書			Hspice		単位	判定	補足
बहेक् बहेक	視日		Min	Тур	Max	Min	Тур	Max				Min	Тур	Max	Min	Тур	Max			
खेळि खेळे खेळे खेळे खेळे खेळे खेळे खेळे खंळे खं खं </td <td>電源電圧</td> <td></td> <td></td> <td>3.3</td> <td></td> <td>3.0</td> <td>3.3</td> <td>3.6</td> <td>V</td> <td>0</td> <td></td> <td></td> <td>1.8</td> <td></td> <td>1.65</td> <td>1.8</td> <td>1.95</td> <td>V</td> <td>0</td> <td></td>	電源電圧			3.3		3.0	3.3	3.6	V	0			1.8		1.65	1.8	1.95	V	0	
make max max<	電源電流	平均値		2000		2162	2279	2426	uA	0	T=25°C		2000		264.3	522.7	709.1	uA	0	@IBIAS=36 µ A,VIN=0.9V
Added Added Add A	負荷抵抗			1.0		2			kΩ	\triangle								kΩ		
<table-container> Abb Abb<!--/</td--><td>負荷容量</td><td></td><td></td><td>20</td><td></td><td></td><td>20</td><td></td><td>pF</td><td>\triangle</td><td></td><td></td><td>20</td><td></td><td></td><td>20</td><td></td><td>рF</td><td></td><td></td></table-container>	負荷容量			20			20		pF	\triangle			20			20		рF		
min min <td>入出力電圧範囲</td> <td></td> <td></td> <td></td> <td></td> <td>0.40</td> <td></td> <td>2.00</td> <td>V</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.20</td> <td></td> <td>1.60</td> <td>V</td> <td></td> <td></td>	入出力電圧範囲					0.40		2.00	V						0.20		1.60	V		
Image Image <th< td=""><td></td><td>min</td><td></td><td>0.4</td><td></td><td></td><td>0.20</td><td>0.45</td><td></td><td></td><td></td><td></td><td>0.2</td><td></td><td></td><td>0.2</td><td></td><td></td><td></td><td>VDD=1.8V</td></th<>		min		0.4			0.20	0.45					0.2			0.2				VDD=1.8V
mine in	VDD-3.5V	max		2.2		2.05	2.30						1.6			1.6				
max max </td <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td>0.20</td> <td>0.45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		min					0.20	0.45								-				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>VDD-3.0V</td> <td>max</td> <td></td> <td></td> <td></td> <td>2.00</td> <td>2.10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	VDD-3.0V	max				2.00	2.10									-				
DCC / v VIMA 0 0.00	ユニティゲインバッファAC特性																			
matrix matrix </td <td>DCゲイン</td> <td>@1KHz</td> <td></td> <td>0.0</td> <td></td> <td>-0.01</td> <td>0.00</td> <td>0.10</td> <td>dB</td> <td>0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>dB</td> <td>0</td> <td></td>	DCゲイン	@1KHz		0.0		-0.01	0.00	0.10	dB	0			0.0			0.00		dB	0	
h h	告述 (BW)	f(_3dB)		40		29.7	59.1	159.9	MH7	\triangle	in=0.4~2.2V				4.324	10.62	17.5	MH7		in=0.2~1.6V
<table-container> へ力分換算量 □ <</table-container>		1(000)		40		41.3	63.1	159.9	IVITIZ	0	in=0.4~2.0V				-	1	-	IVIT IZ		
<table-container> オージンサーブAC4性 「「「」」」」 「「」」」」 「「」」」 「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」」 「」」」 「「」」」 「「」」」 「」」」<</table-container>	入力換算雑音	Vni				38	43	69	uV						43.6	58.6	130.9	uV		BWまで積分
Image: stype	オープンループAC特性																			
<table-container> 1 1 1 2 2 3 8 8 1</table-container>	DCゲイン	@1KHz				47	63	68	dB						11	76	79	dB		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	コニティゲイン周波数	fu				20.4	36.3	84.8	MH7		in=0.4~2.2V				2.4	13.2	20.9	MH7		in=0.2~1.6V
<table-container> here image <th< td=""><td></td><td>5</td><td></td><td></td><td></td><td>27.4</td><td>38.5</td><td>71.2</td><td>IVITIZ</td><td></td><td>in=0.4~2.0V</td><td></td><td></td><td></td><td>-</td><td>1</td><td>-</td><td>IVIT IZ</td><td></td><td></td></th<></table-container>		5				27.4	38.5	71.2	IVITIZ		in=0.4~2.0V				-	1	-	IVIT IZ		
1 1 60.3 68.1 84.7 00 CL=17pF 1 1 0.0 CL=17pF 2=之ティゲインバッフTR特性 1	位相全巡	PM		60		56.9	64.5	81.0	dea	\triangle	CL=20pF		60		62.6	67.2	91.4	deg	0	CL=20pF
Alphalphane Alp	田市水市	1 IVI				60.3	68.1	84.7	ucs	0	CL=17pF				62.6	66.7	91.8	ucs	0	CL=17pF
OADACFYPTEE< Image: Solution of the state of the st	ユニティゲインバッフTR特性																			
++++++++++++++++++++++++++++++++++++	〇入力ステップ電圧=0.1V										VL/VH=1.15/1.25V									VL/VH=0.85/0.95V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	セトリング時間(VI→VH)	99%				4.5	6.1	7.9	ns						58.5	84.8	141.4	ns		
+ + + + + + + + + + + + + + + + + + +		99.9%				8.3	15.6	22.1	ns						74.8	124.4	219.1	ns		
3 + 3 + 5 + 6 + 6 + 6 + 7 + 5 + 7 + 8 + 7 + 5 + 7 + 8 + 7 + 5 + 7 + 8 + 7 + 5 + 7 + 7 + 7 + 8 + 7 + 5 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7	セトリング時間(VH→VI)	99%				3.7	5.2	12.9	ns						59.2	86.5	150.9	ns		
d = -r/r - y - 1 + v		99.9%				11.5	15.9	23.7	ns						74.1	128.0	231.0	ns		
$\nabla \gamma \delta' - \gamma 2 - \gamma$ Vu sh Image: Constraint of the state of t	オーバーシュート	Vo sh				0.3	0.6	10.3	тV						1.9	3.5	7.0	mV		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	アンダーシュート	Vu sh				0.2	0.3	5.7	mV						1.7	3.3	5.9	mV		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	〇入力ステップ電圧=0.8V										VL/VH=0.4/2.0V									VL/VH=0.4/1.4V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	セトリング時間 (VL→VH)	99%				31.8	35.5	39.7	ns						46.5	80.9	110.2	ns		
セトリング時間(VH→V) 99% 15.2 20.6 28.7 ns 49.8 59.8 129.8 ns 99.9% 99.9% 46.6 67.5 93.3 ns 90.8 113.6 183.6 ns オーバーシュート Vo.sh 64.4 112.3 175.1 mV 59.8 129.8 ns アンダーシュート Vo.sh 64.4 11.4 1.5 1.7 mV 64.6 67.6 30.7 mV 64.7 39.7 mV 64.7 39.7 mV		99.9%				44.4	59.7	82.3	ns						77.5	97.0	164.1	ns		
オーパーシュート Vosh 64.6 67.5 93.3 ns 90.8 113.6 183.6 ns 64.6 オーパーシュート Vosh 64.4 112.3 175.1 mV 15.9 24.0 61.7 mV 64.7 アンダーシュート Vush 1.4 1.5 1.7 mV 0.6 7.3 39.7 mV 64.7 スルーレート SR 37.1 40.6 45.5 V/us 23.7 42.2 73.1 V/us VIN=0-1.8V, 0.5-1.3V meas オフセット OF OF M	セトリング時間(VH→VL)	99%				15.2	20.6	28.7	ns						49.8	59.8	129.8	ns		
$ \pi - r - b = -b $ Vo sh 64.4 112.3 175.1 mV 15.9 24.0 61.7 mV mV $ T > r > r - b = -b $ Vu sh 1.4 1.5 1.7 mV 0.6 7.3 39.7 mV mV $ T > r > r - r - b $ SR 37.1 40.6 45.5 V/us 23.7 42.2 73.1 V/us VIN=0-1.8V, 0.5-1.3V meas $ T - r - r + SR $ OF OF mV mV mV 0.6 0.28 -0.13 1.591 mV VIN=0.9V		99.9%				46.6	67.5	93.3	ns						90.8	113.6	183.6	ns		
アンダーシュート Vush 1.4 1.5 1.7 mV 0.6 7.3 39.7 mV スルーレート SR 37.1 40.6 45.5 V/us 23.7 42.2 73.1 V/us VIN=0-1.8V, 0.5-1.3V meas オフセット OF OF mV mV mV 0.228 -0.13 1.591 mV VIN=0.9V	オーバーシュート	Vo sh				64.4	112.3	175.1	mV						15.9	24.0	61.7	mV		
スルーレート SR 37.1 40.6 45.5 V/us 23.7 42.2 73.1 V/us VIN=0-1.8V, 0.5-1.3V meas オフセット OF OF mV mV OF N VIN=0.9V	アンダーシュート	Vu sh				1.4	1.5	1.7	mV						0.6	7.3	39.7	mV		
オフセット OF OF MV MV MV VIN=0.9V	スルーレート	SR				37.1	40.6	45.5	V/us						23.7	42.2	73.1	V/us		VIN=0-1.8V, 0.5-1.3V meas
	オフセット	OF							mV						0.228	-0.13	1.591	mV		VIN=0.9V

Netlist AMP \rightarrow post netlist / R+C+CC mode BIAS \rightarrow post netlist / C+CC mode

Max/Min value are extracted from PVT (Process Voltage Temp) simulation result

5-3. io_aobufar_1P8 (Layout)

<u>Layout</u>

5-3. io_aobufar_1P8 (Schematic1)

5-3. io_aobufar_1P8 (Schematic2, Amp)

5-3. io_aobufar_1P8 (Schematic3, Amp)

5-3. io_aobufar_1P8 (Schematic4, Bias)

ARO_BIAS18_AOB04AB

6-0. Comment

There are 3 kinds of special pads in 4 corners of iorings.

VDET ---- Corner 4 pads which are connected to handle wafer via P+ implant(PSUB).
 VIO_BNW --- Connected to BNW ring which covers IO buffers and protect from back gate problem. Normally this should be connected to ground.
 VIO_2SI --- Connection to 2nd SQL layer (2SL or SQL2) which covers IQ buffer area

VIO_2SI --- Connection to 2nd SOI layer (2SI or SOI2) which covers IO buffer area. This pad becomes non-connection in the case of single SOI wafer.

Schematics are same for all 4 examples and shown below. Please replace the IO cells according to your design.

6-1. top_iolib_1P8 (All IO rings)

<u>Layout</u>

6-2. ioring29_5M5_1P8 (IO ring for 2.9mm chip (PGA178))

Schematic

-VDD18 GND18

×-

10_BNW

VIO_2SI

1.8V IO

6-3. ioring29L2_5M5_1P8 (IO ring for 2.9mm chip with 200um bias spacing for pixel (PGA178))

Schematic

6-4. ioring29L2_5M5_1P8_ALL_io (IO ring for 2.9mm chip with 200um bias spacing for pixel (PGA178), include analog output buffer)

6-5. ioring45_5M5_1P8 (IO ring for 4.5mm chip (PGA178))

Schematic

6-6. ioring45L2_5M5_1P8 (IO ring for 4.5mm chip with 200um bias spacing for pixel (PGA178))

Schematic

-VDD18 -GND18

Ø

VIO_BNW VIO_2SI

6-7. ioring60_5M5_1P8 (IO ring for 6.0 mm chip (PGA240))

Schematic

6-8. ioring60L2_5M5_1P8 (IO ring for 6.0 mm chip with 200um bias spacing for pixel (PGA240))

Schematic

6-9. ioring60L2S_5M5_1P8 (IO ring for 6.0 mm chip with 200um bias spacing for pixel (PGA178))

Schematic

This chip can be packaged in PGA178 with noconnection of duplicated power/ground/bnw/soi2 connections.

Used Test Bench List

7. Appendix

Degital buf	TB_iobuf_5M4_1P8_DC
	TB_iobuf_5M4_1P8_TRAN
	TB_iobuf_5M4_1P8_TRAN_post
	TB_iobuf2_5M4_1P8_TRAN_post
	TB_ioIT4ND_5M5_1P8_DC
	TB_ioIT4ND_5M5_1P8_TRAN_post
	TB_ioIT4NDP_5M5_1P8_DC
	TB_ioIT4NDP_5M5_1P8_TRAN_post
	TB_ioIT4N_5M4_1P8_TRAN_post
	TB_ioOT4A_5M5_1P8_TRAN_post
	TB_ioOT4B_5M5_1P8_TRAN_post
Analog buf	TB_AOBUF_1P8_RR_DC
	TB_AOBUF_1P9_RR_DC_post
	TB_AOBUF_1P8_RR_AC
	TB_AOBUF_1P8_RR_AC_post
	TB_AOBUF_1P8_RR_VF_AC
	TB_AOBUF_1P8_RR_VF_AC_post
	TB_AOBUF_1P8_RR_TRAN
	TB_AOBUF_1P8_RR_TRAN_post

Power GND resistance

7. Appendix continued

Digital Output Buffer IOH/IOL

mA

<Condition> Tr:Typical, VDD18=1.8V, Tj=25deg, VOL=0.4V,VOH=1.4V

-15.5

17.6

|4mA|>

OK