

## Progress on Silicon-on-Insulator Monolithic Pixel Process

ertex

Sep. 17, 2013 Vertex2013@Lake Starnberg Yasuo Arai, KEK yasuo.arai@kek.jp http://rd.kek.jp/project/soi/

## <u>Outline</u>

- Introduction
- Basic SOI Pixel Process
- Advanced Process Techniques
- Project Status
- Summary





Silicon-On-Insulator Pixel Detector (SOIPIX)

## Feature of SOI Pixel Detector

- No mechanical bonding. Fabricated with semiconductor process only, so high reliability, low cost are expected.
- Fully depleted thick sensing region with Low sense node capacitance.
- On Pixel processing with CMOS transistors.
- Can be operated in wide temperature (1K-570K) range, and has low single event cross section.
- Based on Industry Standard Technology.





## Basic SOI Pixel Process



#### Lapis (\*) Semi 0.2 µm FD-SOI Pixel Process

| Process             | 0.2µm Low-Leakage Fully-Depleted SOI CMOS<br>1 Poly, 5 Metal layers.<br>MIM Capacitor (1.5 fF/um <sup>2</sup> ), DMOS<br>Core (I/O) Voltage = 1.8 (3.3) V                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOI<br>wafer        | Diameter: 200 mmφ, 720 μm thick<br>Top Si : Cz, ~18 Ω-cm, p-type, ~40 nm thick<br>Buried Oxide: 200 nm thick<br>Handle wafer: Cz (n) ~700 Ω-cm,<br>FZ(n) ~7k Ω-cm, FZ(p) ~25 k Ω-cm etc. |
| Backside<br>process | Mechanical Grind, Chemical Etching, Back side Implant, Laser Annealing and Al plating                                                                                                    |

(\*) Former OKI Semiconductor Co. Ltd.

#### Mask Size

#### 24.6 x 30.8 mm

Smallest chip area for MPW run is 2.9mm x 2.9mm



## Structure of Top Si

#### 1 Poly + 5 Metal MIM Capacitor on 3M



## Structure of Bottom Si (Sensor part)



Normal Process for n- substrate

Reverse Process for p- substrate

- PS & NS --- High doping density Layer (Top Si is removed)
- Buried Well (BPW, BP2, BP3 & BNW) --- Low doping density buried Layer
- For p-type substrate, dopants are changed to create reverse polarity by using the same mask layers.
- Doping density and depth can be changed on request.



#### **Examples of SOIPIX Measurement**

PF-AR NE7A 33.3keV monochromatic Acrylic resin 40mm 200us x 250 frames



#### **Examples of SOIPIX Measurement**



## Advanced Process Techniques

- Stitching
- Double SOI
- 3D Vertical Integration



## Stitching Exposure for Large Sensor

#### SOPHIAS by RIKEN

**Reticule size** Buffer ~25mm x 31mm Region 10um Buffer Region 10um Shot A Shot B

- Width of the Buffer Region can be less than 10um.
- Accuracy of Overwrap is better than 0.025um.

#### **RIKEN SOPHIAS chip**

## X-ray Transmission



- Source-sample : 200 mm
- detector-sample : 600 mm
- X-ray :40 kV, 800 uA
- Cu target
- X-ray source size : ~3 um
- Exposure time : 10 msec
  - Temperature : room temperature



## Double SOI wafer

#### Sensor and Electronics are located very near. This cause ...



Then we newly introduced additional conductive layer under the transistors to reduce all effects ( $\rightarrow$  Double SOI).



## First Trial : Double-SOI from SOITEC



#### (after Field-Anneal)

Resistivity of the middle Si is ~10 Ohm•cm. with CoSi2 : ~170 kOhm/ □ w/o CoSi2 : ~1 MOhm/ □



#### Suppression of Back-Gate Effect with Middle-Si layer



a) Middls-Si Floating

Back-Gate Effect is fully suppressed with the Middle Si Layer of fixed voltage.

Nch Core Normal-Vt  $L / W = 0.2 / 5.0 \mu m$ Vd=0.1V





# Necessary V<sub>SOI2</sub> voltage to restore original threshold voltage





24

#### Effect of Middle Si potential to Charge Collection



- To compensate trapped hole effect,
  → negative SOI2 voltage is necessary.
- To push electrical flux lines to sense node
  → positive SOI2
  voltage is necessary.

It is better to use p-type substrate instead of ntype.



## Vertical (3D) Integration

3D vertical Integration technique is expected to play an important role in future high performance pixel detector. We have made 3D test chips. These chips were bonded with  $\mu$ -bump technology (~5 um pitch) of T-micro Co. Ltd.



#### (1) Stack Process Flow (after finishing wafer process)



#### Daisy Chain TEG (After Deposition)



Upper Chip



Alignment Mark (After Stacking – Adhesive Injection – Si Wet Etching)









#### **Preliminary!**

#### Id – Vd Characteristcs



## Project Status



Diffraction Enhanced (Low angle) Image



### **On-Going SOI Projects in Japan**

• INTPIX : Genera Purpose Integration Type  $\rightarrow$  KEK SOPHIAS : Large Dynamic Range for XFEL → Riken • PIXOR : Belle II Vertex Detector  $\rightarrow$  Tohoku Univ. • XRPIX : X-ray Astronomy in Satellite  $\rightarrow$  Kyoto Univ. STJPIX : Superconducting Tunnel Junction on SOI  $\rightarrow$  Tsukuba Univ. • CNTPIX : General Purpose Counting Type  $\rightarrow$  KEK • LHDPIX : Nuclear Fusion Plasma X-ray  $\rightarrow$  KEK, NIFS • MALPIX : TOF Imaging Mass Spectrometer → KEK, Osaka Univ. TDIPIX : Time Delaying Integration for X-ray Inspection  $\rightarrow$  KEK

Rev. Hori

and Many Other Project are being planned

[Grant - in - Aid for Scientific Research on Innovative Areas(Research in a proposed research area)] + Science and Engineering



## Summary

- We have been developing SOI Pixel process and fabricated many kinds of SOIPIX detectors which integrate both radiation sensors and readout circuits in a single die.
- We have ~twice/year regular MPW runs with increasing No. of users.
- Many new process technologies have been developed; Buried P-well, High resistive SOI wafer, Nested well structure, Stitching, Double SOI, Vertical integration ...
- Double SOI of p-type substrate looks promising for radhard counting-type pixel detector.
- New SOI project of 5 year period is approved by Japanese government.